THE CONCEPT OF EXPERIMENTAL RESEARCH ON THE BEHAVIOR OF SAND COVER MATERIAL FOR PROTECTIVE SHELTERS FOR CIVILIANS
PDF

Keywords

protective structure, sand covering, Split Hopkinson Pressure Bar

Abstract

The article proposes the concept of experimental dynamic tests of aggregate behavior - sand used as a material for covering temporary protective shelters for the population and civil defense. These shelters are part of the construction shielding infrastructure useful in crisis situations. Laboratory tests of loose soil, including sand, with impact loads, are based on the Split Hopkinson Pressure Bar using a clamp. The work describes both this experimental method and the original laboratory stand for impact tests based on a pneumatic launcher with a projectile - bar. This position was built at the Institute of Civil Engineering of the Military University of Technology taking into account the requirements of generally applicable legal provisions. Examples of preliminary experimental research on the behavior of selected aggregate - dry sand under dynamic load - are presented.

https://doi.org/10.37105/iboa.51
PDF

References

[1] Bragov A. M., Lomunov A. K., Sergeichev I. V., Tsembelis K., Proud W. G. (2008). „Determination of physicomechanical properties of soft soils from medium to high strain rates”. International Journal of Impact Engineering, Vol. 35:967-976. DOI: https://doi.org/10.1016/j.ijimpeng.2007.07.004.
[2] Chmielewski R., Duda K., Sobczyk K. (2018). „The concept of a prefabricated structure for protection of critical infrastructure facilities”. Biuletyn WAT, Vol. LIXII/2:173-196. DOI: http://dx.doi.org/10.5604/01.3001.0012.0979.
[3] Ho T. S., Masuya H., Nishita Y. (2014). „Evaluation of the Effect of Sand Pack Coverings on Rockfall Protection Fences Using Numerical Approach”. International Journal of Protective Structures, Vol. 5:187-205. DOI: https://doi.org/10.1177/2041419618798382.
[4] Kruszka L. (2003). „Analiza numeryczna zachowania się ściany murowanej obciążonej wybuchem”. Inżynieria i Budownictwo, Nr 11:637-639.
[5] Kruszka L. (2004). „Numeryczna analiza deformacji ściany murowanej budynku pod działaniem ciśnienia powietrznej fali uderzeniowej generowanej bezkontaktowym wybuchem skupionego ładunku MW”. Biuletyn WAT, Vol. LIII/11-12:65-86.
[6] Payne J. E., Myers W. S., Ehrgott J. Q., Rickman D. D., Thomas C. D., Windham J. E. (2018). „Investigation of relationships between soil type and condition and crater size for shallow-buried explosive charges”. International Journal of Protective Structures, Vol. 10:135-153. DOI: https://doi.org/10.1177/2041419618798382.
[7] Siwiński J., Stolarski A. (2015). „Analiza oddziaływania wybuchu zewnętrznego na przegrody budowlane”. Biuletyn WAT, Vol. LXIV/2:173-196. DOI: 10.5604/12345865.1157340.
[8] Szcześniak Z., Lalka J. (2019). „Ukrycia doraźne dla zadań ochrony ludności i obrony cywilnej”. Inżynieria Bezpieczeństwa Obiektów Antropogenicznych, Nr 1-2. DOI: https://doi.org/10.37105/iboa.2019.1.3.
Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.