SCAN-TO-BIM method and analysis of measurement accuracy on the example of a historic church
pdf

Keywords

terrestrial laser scanning;
Scan-to-BIM;
historical church;
geometry modeling;
accuracy analysis

Abstract

Building information modeling (BIM) data for existing buildings based on scans and point clouds acquired from terrestrial laser scanning (TLS) is the basis of the Scan-to-BIM methodology and is becoming common practice. However, work on the accuracy of the resulting model is still desired. The article discusses the possibility of developing a BIM model of a historical building, based on data obtained by terrestrial laser scanning. The subject of the study was the church in Posada Rybotycka (Poland). The mapping reliability studies included PointCab and ReCap point cloud processing, 3D modeling of the object using Revit software, and analysis of the accuracy of distance measurements made by TLS with data obtained from measurements made with traditional methods: total station and laser rangefinder. Based on the conducted research, the possibility of using the BIM with TLS data in the process of reconstructing the geometry of a historic building was evaluated. The results of the study showed that the convergence of the 3D model geometry with the actual course of the structure depends on the development methodology, i.e. the accuracy of 3D data acquisition, the registration process, the filtering procedure, or the parametric structural modeling method used.

https://doi.org/10.37105/iboa.193
pdf

References

1. Aricò. M. Lo, Brutto, M. (2022). From scan-to-bim to heritage building information modelling for an ancient arab-norman church. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B2-2022, XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France, https://isprs-archives-XLIII-B2-2022-761-2022.pdf (copernicus.org)
2. Baik, A. (2017). From point cloud to jeddah heritage BIM nasif historical house – case study. Digital Applications in Archaeology and Cultural Heritage, 4, 1–17. DOI: 10.1016/j.daach.2017.02.001
3. Bruno, N., Roncella, R. A. (2018). Restoration oriented HBIM system for Cultural Heritage documentation: The case study of Parma cathedral. International Archives of Photogrammetry, Remote Sensing and Spatial and Information Sciences, XLII-2, 171-178. DOI: 10.5194/isprs-archives- XLII-2-171- 2018
4. Chiabrando, F., Lo Turco, M., Rinaudo, F.(2017). Modeling the decay in an HBIM starting from 3D point clouds. A followed approach for cultural Heritage knowledge. International Archives of Photogrammetry, Remote Sensing and Spatial and Information Sciences, XLII-2/W5, 605-612. DOI: 10.5194%2Fisprs-archives-XLII-2-W5-605- 2017
5. Chmielewski, R., Baryłka, A., Obolewicz, J. (2021). The impact of design and executive errors affecting the damage to the floor of the concert hall, Journal of Achievements in Materials and Manufacturing Engineering, 104 (2), 49-56. DOI/10.5604/01.3001.0014.8488
6. Chmielewski, R., Kruszka, L. (2015). Application of selected modern technology systems to strengthen the damaged masonry dome of historical St. Anna’s Church in Wilanów (Poland), Case Studies in Construction Materials, 3, 92-101. DOI: 10.1016/j.cscm.2015.08.001
7. Paszek P. Cerkiew w Posadzie Rybotyckiej, (2019), http://www.tuhistoria.pl/cerkiew-w-posadzie-rybotyckiej; acces 2023, (in Polish).
8. Kwinta A., Gradka R. (2021). Dynamic objects geometry measurement by laser scanning – a case study. Geomatics, Landmanagement and Landscape, 1, 41-56. DOI: 10.15576/GLL/2021.1.41
9. Leśniak, A., Górka, M., Skrzypczak, I. (2021), Barriers to BIM implementation in architecture, construction, and engineering projects—The polish study. Energies 14(8), 2090. DOI: 10.3390/en14082090
10. Moyano, J., León, J., Nieto-Julián, J. E., Bruno, S. (2021). Semantic interpretation of architectural and archaeological geometries: Point cloud segmentation for HBIM parameterisation, Automation in Construction, 130, 103856. DOI: 10.1016/j.autcon.2021.103856
11. Obolewicz, J., Baryłka, A. (2021) Technical safety on construction sites .Open Access Journal Modern Engineering, 3, 14-23, https://mengineering.eu
12. Obolewicz, J., Baryłka, A., Szota, M. (2023). Safe operation of buildings during the winter period. Journal of Achievements in Materials and Manufacturing Engineering, 116(1), 36-41. DOI:10.5604/01.3001.0016.3402
13. Piech, I., Kwoczynska, B., Slowik, D. (2018). Using Terrestrial Laser Scanning in Documentation of Antique Vehicles. In 2018 Baltic Geodetic Congress (BGC Geomatics) 373-376. IEEE. DOI: 10.1109/BGC-Geomatics.2018.00077
14. Pitkänen, T.P., Raumonen, P., Liang, X., Lehtomäki, M., Kangas A. (2021). Improving TLS-based stem volume estimates by field measurements, Computers and Electronics in Agriculture, 180, 105882. DOI: 10.1016/j.compag.2020.105882
15. Rocha, G., Mateus, L., Fernández, J., Ferreira, V. (2020). A Scan to-BIM Methodology, Applied to Heritage Buildings. Heritage, 3(1), 47-67. DOI:10.3390/heritage3010004
16. Sampaio, A.Z., A.M., Sánchez-Lite, A., Zulueta, P., González-Gaya, C. (2021). Analysis of BIM Methodology Applied to Practical Cases in the Preservation of Heritage Buildings. Sustainability, 13(6), 3129. DOI: 10.3390/su13063129
17. Skrzypczak, I., Leśniak, A. (2022). Wybór metody pomiarowej do inwentaryzacji obiektu zabytkowego z zastosowaniem AHP. Materiały Budowlane, 11, 106—108. DOI: 10.15199/33.2022.11.29 (in Polish)
18. Skrzypczak, I., Oleniacz, G., Leśniak, A., Mrówczyńska, M. Rymar, M., Oleks, M. (2023). A practical hybrid approach to the problem of surveying a working historical bell considering innovative measurement methods. Heritage Science, 11(1), 152, DOI: 10.1186/s40494-023-01007-1
19. Volk, R., Stengel, J., Schultmann, F. (2014): Building Information Modeling (BIM) for existing buildings – Literature review and future needs. Automation in Construction, 38, 109-127. DOI: 10.1016/j.autcon.2013.10.023
Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.