Survival probability function as a supporting element in automated triage system on the battlefield
pdf

Keywords

decision support system
medical evacuation
vital signs measurement
biomedical signals measurement

Abstract

Mass events are incidents involving a large number of casualties. They are an integral part of combat operations. These events are characterized by exceeding the capabilities of the rescuers present at the scene during a specific phase of the operation. The difference in triage applied in combat compared to triage used in civilian mass events is directly related to their specific nature and intended objectives. The article presents an innovative segregation algorithm that takes into account the value of the so-called "survival function," which is a component of a medical evacuation decision support system based on the integration of monitoring and analysis of soldier's vital parameters with the medical security system.

https://doi.org/10.37105/iboa.188
pdf

References

Literatura
1. Owczuk R., Anestezjologia i intensywna terapia, PZWL Wydawnictwo Lekarskie, Warszawa, 2021
2. Szczeklik A., Gajewski P., Podręcznik chorób wewnętrznych, Medycyna Praktyczna, Kraków, 2014
3. Williams B. et al., Wytyczne ESC/ESH dotyczące postępowania w nadciśnieniu tętniczym, Nadciśnienie Tętnicze w Praktyce, 2018, 4(2), 49-142
4. Dobrowolski A., Oskwarek P., Rokicki S., Wiktorzak P., Łubkowski P., Murawski P., System automatycznego wsparcia triażu wykorzystujący algorytm drzewa decyzyjnego i funkcję szans przeżycia, Biuletyn WAT, 2022, 71(3), 31-67
5. Pollaris G., Sabbe M., Reverse triage: more than just another method, European Journal of Emergency Medicine, 2016, 23(4), 240-247
6. Łubkowski P., Krygier J., Sondej T., Dobrowolski A., Apiecionek Ł., Znaniecki W., Oskwarek P., Decision support system proposal for medical evacuations in military operations, Sensors, 2023, 23
7. Mello F.C. et al., Predicting smear negative pulmonary tuberculosis with classification trees and logistic regression: a cross-sectional study, BMC Public Health, 2006, 6(43), 1-8.
8. Zhang H., Holford T., Bracken M.B., A tree-based method of analysis for prospective studies, Statistics in Medicine, 1996, 15(1), 37-49
9. B. Wójtowicz, A.P. Dobrowolski, K. Tomczykiewicz, Fall detector using discrete wavelet decomposition and SVM classifier, Metrology and Measurement Systems, 2015, 22(2), 303-314
10. A. P. Dobrowolski, M. Suchocki, K. Tomczykiewicz, E. Majda-Zdancewicz, Classification of auditory brainstem response using wavelet decomposition and SVM network, Biocybernetics and Biomedical Engineering, 2016, 36(2), 427-436
11. P. Stasiakiewicz, A.P. Dobrowolski et al., Automatic classification of normal and sick patients with crackles using wavelet packet decomposition and support vector machine, Biomedical Signal Processing and Control, 2021, 67, 1-13
Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.