Assessment of threat arising by closed - volume explosions of fuel - air mixtures
pdf

Keywords

fuel-air mixtures, closed space combustion, decomposition rules

Abstract

The method of estimation of maximal parameters of combustion of gaseous mixtures in closed space is presented. Estimation of chemical composition of combustion products is based on simplified rules of decomposition of reactive medium. Exemplary calculations of temperature, pressure, heat of combustion of hydrocarbon/air mixtures are presented. The accuracy of presented method was validated by comparison with calculations performed by thermodynamic numerical code that include wide list of chemical substances present in combustion products. The obtained results confirm applicability of the proposed method to predict closed space combustion parameters of gaseous mixtures. Semi-empirical methods of estimation of flammability limits are briefly referred

https://doi.org/10.37105/iboa.114
pdf

References

1. Baker, W.E., Cox, P.A., Westine, P.S., Kulesz, J.J., Strehlow, R.A. (1983). Explosion Hazards and Evaluation, Amsterdam: Elsevier.
2. Baryłka, A. (2019). Zagadnienie zdatności obiektów budowlanych do użytkowania w problematyce inżynierii bezpieczeństwa tych obiektów, Inżynieria Bezpieczeństwa Obiektów Antropogenicznych, 4, doi.org/10.37105/iboa.31.
3. Baryłka, A. (2020). The impact of fire on changing the strength of the underground shelter structure, Rynek Energii, 146, pp. 71–75.
Retrieved from http://rynek-energii.pl/pl, 23.04.2021.
4. Bowen, P. J., Cameron, L. R. J. (1999). Hydrocarbon aerosol explosion hazards. A Review, Trans IChemE, 77, Part B, pp. 22–30.
Retrieved from https://www.tib.eu/Transactions-of-the-Institution-of-Chemical-Engineers, 06.07.2021.
5. Chase, M.W. et al. (1998). NIST-JANAF Thermochemical Tables, Monograph No 9, Journal of Physical and Chemical Reference Data.
6. Ciccarelli, G., S. Dorofeev, S. (2008). Flame acceleration and transition to detonation in ducts, Progress in Energy and Combustion Science, vol. 34, pp. 499–550,
doi: 10.1016/j.pecs.2007.11.002.
7. Chyży, T., Mackiewicz, M. (2017). Simplified function of indoor gas explosion in residential buildings, Fire Safety Journal, 87, pp. 1-9,
doi.org/10.1016/j.firesaf.2016.10.004.
8. Crowl, D.A. (2003), Understanding Explosions, American Institute of Chemical Enginers: New York.
9. Czyż, M, Grzebielec, A. (2021). Modification of the cascade methane liquefaction process to improve the efficiency of the system, Inżynieria Bezpieczeństwa Obiektów Antropogenicznych, 2, pp. 43 – 48, doi.org/10.37105/iboa.112.
10. Glushko, V.P. et al. (1978–1982). Termodinamicheskije Svoistva Individualnykh Veshchestv, Vol. I–IV, Moskwa: Nauka.
11. Grabarczyk, M., Ciesińska, W., Porowski, R. (2016). Lower Flammability Limits – Experimental and Theoretical Determination Methods for Gaseous and Liquid Fuels. State of the Art., Problems of Mechatronics, Armament, Aviation, Safety Engineering, 7(4), pp. 85-114, DOI 10.5604/01.3001.0009.5021
12. Gumiński K. (1980). Chemia Fizyczna, Państwowe Wydawnictwo Naukowe: Warszawa
13. Jones G.W. (1938). Inflammation limits and their practical application in hazardous industrial operations, Chem. Rev., 22, pp. 1–26, doi: 10.1021/cr60071a001
14. Kamlet, M.J., Jacobs, S.J. (1968). Chemistry of Detonations. I. A Simple Method for Calculating Detonation Properties of C-H-N-O Explosives, J. Chem. Phys., 48, pp. 23–35.
15. Keshavarz, M.H. Kamalvand, M., Jafari, M., Zamani, A. (2016). An Improved Simple Method for the Calculation of the Detonation Performance of CHNOFCl, Aluminized and Ammonium Nitrate Explosives, Cent. Eur. J. Energ. Mater. 13 (2), pp. 381-396.
Retrieved from https://www.wydawnictwa.ipo.waw.pl/cejem, 21.04.2021.
16. Klapötke, T.M. (2015). Chemistry of High-Energy Materials, Berlin: De Gruyter.
17. Kowalewicz A. (2000). Podstawy Procesów Spalania, Warszawa: Wydawnictwa Naukowo-Techniczne.
18. Le Chatelier, H. (1891). Estimation of firedamp by flammability limits, Ann. des mines, vol. XIX, 8e serie, pp.388-395.
19. Mallard E., Le Chatelier H., (1883). Recherches expérimentales et théoriques sur la combustion des mélanges gazeoux explosifs, Ann. des mines, vol. IV, 8e serie, pp. 274-388.
20. Orlenko L.P. et al. (2004). Fizika Vzryva, Moskwa: Fizmatlit.
21. Papliński, A. (2007). Implementation of the Steepest Descent Method to Evaluation of Equilibrium Composition of Reactive Mixtures Containing Components in Condensed Phases, Cent. Eur. J. Energ. Mater. 4 (1-2), pp. 135-150.
Retrieved from https://www.wydawnictwa.ipo.waw.pl/cejem, 21.04.2021.
22. Papliński A. (2016). Wybuchy gazu w pomieszczeniach zamkniętych – rozpoznanie charakterystyk i przeciwdziałanie zagrożeniom, Inżynieria Bezpieczeństwa Obiektów Antropogenicznych, 5(3), pp. 9-14.
Retrieved from https://www.inzynieriabezpieczenstwa.com.pl, 21.04.2021.
23. Weast R.C., Lide D.R., Astle M.J., Beyer W.H. (1990). CRC Handbook of Chemistry and Physics, Boca Raton: CRC Press.
Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.