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Abstract 

This paper continues work from part 1 where a high precision estimator for energy efficiency and indoor 

environment based on artificial neural networks (ANN) was examined. Part 1 demonstrated that creating 

a precise representation of a mathematical relationship one must evaluate the stability and fitness under 

randomly changing initial conditions. Now, we extend our requirements for the model to be rapid and 

precise. At the end of this work we obtain a road map for the design and evaluation of ANN-based 

estimators of the given performance aspect in a complex interacting environment. This paper also shows 

that ANN system designed may have a high precision in characterizing the response of the building 

exposed to variable outdoor climatic conditions. The absolute value of the relative errors, MaxAR, is 

less than 2%. It proves that monitoring and ANN-based characterization approach can be used for 

different buildings, including those with the best environmental performance. 

 

Keywords: estimator design procedure, estimation, intelligent construction, intelligent building, control 

system 

 

1 Introduction  

In a companion paper [1] we claim that the use of artificial neural networks (ANN) is necessary for linking the 

next generation of smart buildings with the requirements of zero energy buildings and for the development of a new 

category, namely zero impact buildings (ZIB). Category ZIB represents the next generation of near-zero energy 
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buildings with an advanced building automatic system that is developed for a specific combination of climate, 

service, and occupancy characterization under a monitoring and building characterization approach. 

This paper proposes a universal methodology that includes buildings with light exterior structures e.g., 

houseboats exposed to rapid weather changes or buildings with rapidly changing occupancy where interior 

conditions may change in a short time. We must be able to design a changing control system ensuring the 

appropriate quality of the internal environment. In doing so, one must first understand interaction of factors shaping 

the indoor environment [2-6] and select a suitable estimator for which acceptance criteria are already in existence, 

e.g., PMV (percentage mean vote). 

Despite the broad literature on consumer satisfaction and electronic management [7-13], we may return to these 

issues later in the work, because this approach is complex requires much larger memory space, and increases the 

cost of control systems [14,15]. At this stage of new technology development, we consider maintaining the 

precision and adding another attribute of the model, namely simple and rapid solution. Furthermore, in some cases, 

one may use the simple and rapid control system to the used control system and upgrade a specific estimator of the 

physical characteristics [16]. For further discussion on differences look in [17]. 

In this project, one started with another research [18] to logically extrapolate to [16], where we used all 20 

parameters describing all possible factors modifying room temperature. In the next stage, i.e. in part 1 of this paper, 

we described how one can design a precise estimator for the concept of an operational temperature (selecting such a 

weather condition where both estimators, temperature and operational temperature appear to be a similar function 

of the climatic conditions (and both estimators are in the same category of mathematical functions. 

The discussed estimator is a part of control system, shown in Figure 1, and as the verification of ANN 

uncertainty was performed under a steady state, the optimal temperature was a constant value. 

 

 

Figure 1. Partial schematic use in the building control system 

 

2 Methods 

The work is to identify the best but simple and fast estimator of the indoor temperature in relation to 20 factors 

affecting its value. The equation: 

y=f(X)   
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where y represents the room temperature and X is a vector of 20 factors affecting this value. In doing so we are 

looking for the smallest number of neurons that fulfills conditions of independence on the initial values, stability, 

precision, and considerations for overfilling or underfilling, as well as it runs faster than the average [19, 20]. 

 

 

 

Figure 2. The algorithm for identification of the best possible dimension of the matrix of the model describing 

the examined physical phenomenon: (a) Parent procedure P1;  

(b) Nested procedure P2 [1] 

 

This process, in principle, requires training and verification of all 50 cases of a 2-layered neural network, forward 

feeding structures, with one hidden layer where the number of neurons in the hidden layer varies from 2 to 50. In 

each iteration the number for neuron was increased by one. As initial weights and bias are ascribed in a random 

manner, the calculation for each case was repeated 5 times, indexed, and denoted as an approach. Figure 2 shows 

that the algorithm comprised a test loop P2 that was nested in the main loop P1. The results are shown in Figure 4, 

in form of the boxplots [20]. 

For a main criterion for the first neuron network, one uses a minimum value of the maximum absolute relative 

error [21] and it is compared with a similar value established for the given approach. Yet, in establishing criterium 

for network 1 the participating neural networks must have passed the criterion of independence from the initial 

conditions. This requirement warrants repeatability of the network performance [22]. 
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MainCrit=min[〖(〖MaxARE〗_TEST)〗_(s_min^({1}),approch) ]                

where: 

MainCrit – main criterion for choosing the best neural network structure, 

s_min^({1}) – the smallest number of neurons in the hidden layer, 

MaxARE〗_TEST – maximum absolute relative error obtained for the testing stage: 

 

〖MaxARE〗_TEST=max(|(y_iTest-y_ANNiTest)/y_iTest |) 

where: 

y_iTest – a target for the network in the testing stage, 

y_ANNiTest – an output for the network in the testing stage, 

The choice of the main criterion was not straight forward. Yet, selecting the absolute value for the validated 

network ensures that results in the test stage, which by definition are within the range tested during the calibration, 

should be closer to the targets than the maximum established during the calibration of the network [23, 24]. 

Furthermore, this choice gives us a valid estimate of the uncertainty in the case of the model verification when the 

target values are the measured values.  

Measurements were performed every 20 minutes, in summer, during a period of 21 days. The tested parameters 

in 20 min intervals are presented as vector X, such as Measured time in decimal notation every 20 min - Degree of 

opening valve for interior and for exterior earth–air heat exchanger (%), Exterior air temperature (mean of both earth–

air heat exchangers), Relative humidity of exterior air measured on the inlet to earth–air heat exchangers, Irradiation, 

W/m2, measured on east, south, north elevations and on the roof, Temperature of the cooling water in the tank, 

Temperature of the cooling water on return from the tested room, Efficiency of the cooling exchanger (%), Steering 

of the floor cooling valve (%), Temperature: in the adjacent room on side 1,  on side 2, in the adjacent room, in the 

room below, in the room above, Steering of the cooling valve for the floor system, Efficiency of ventilator in climate-

convector (%) and y – room, Temperature.  

The total number of measurements used in the project was 1409.  Out of it 60% was used training (X_iTr,y_iTr), 

20% for validation (X_iVal,y_iVal) and 20% for testing (X_iTest,y_iTest). The algorithm used for data separation 

was as follows: first three records went to training, each next to validation and training.   

The process of training was performed with MATLAB version R2019b on previously normalized data 

(preprocessing). After the analysis, the data will be denormalized (postprocessing) to establish a measure of the 

network efficiency. To this end, we selected the function of map-minmax  [25, 26]. The map-minmax function is a 

linear transformation.  

The Levenberg-Marquardt training algorithm [27] showed satisfactory performance in preliminary studies [28] 

and was used here. The structure of the ANN selected for this project is the feedforward with one hidden layer and 

one output layer [28], see Figure 3.  
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Figure 3. The structure of a one approach of neural network used in the study [1] 

  

In the first part of the publication [1], the entire mathematical apparatus was shown and individual variables were 

described. a robustness study (chapter 3.1) and overfitting and underfitting study (chapter 3.2) of the examined neural 

network structures were performed. Therefore, the results for the optimization criterion are presented below. These 

results refer to a stable neural network with the fastest possible response. 

 

 

Figure 4. Mean absolute relative error obtained for the obtained for the neural network structure with a certain 

number of neurons in a hidden layer 

 

To summarise the requirements for robust, independent from initial conditions, and not overfitted or underfitted 

structures we have only s{1}=8,13,14. Furthermore, we are adding a requirement of a minimum precision [29]. Note 

that to speak about the accuracy of estimation the comparison must involve the measured target value.  

MaxARE_TEST < 5% 
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Even though we talk about three structures, Figure 5 shows the maximum absolute relative error obtained for all 

tested networks [29]. As s{1}=8 is the simplest and also the fastest (Table 1) of the acceptable structures, we select it 

as the final choice. 

s{1} 8 13 14 

approch 1 0,0164 0,0105 0,0228 

approch 2 0,0192 0,0300 0,0280 

approch 3 0,0224 0,0242 0,0191 

approch 4 0,0401 0,0145 0,0290 

approch 5 0,0159 0,0194 0,0194 

Table 1. Maximum absolute relative error obtained for the test stage  

for neural network structures 

    

Figure 5. Maximum absolute relative error obtained for the neural network structure  

with a certain number of neurons in a hidden layer 

 

 

3 Results 

Training of the selected rapid neural network is shown in Figures 6 and 7. Figure 6 shows that epoch number 24 

ends the training process, even though the error reduction continues to the end of the training process. Figure 7 shows 

gradient, momentum, and validation checks for the learning process for the fastest analyzed neural network and 

explains what happens at the 24th epoch.    
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Figure 6. Performance function values obtained during the learning process for the fastest analyzed neural 

network 

 

 

Figure 7. Gradient, momentum, and validation checks values obtained during the learning process for the 

fastest analyzed neural network 

 

 

Figure 8. Error histograms obtained during the learning process  

for the fastest analyzed neural network 
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Figure 8 shows the histogram of errors in the network, as they relate to training, validation, and testing. As Figure 

8 presents MSE i.e., a precision of the error distribution, it is only an interval consistency not a comparison with the 

target values. 

 

4 Discussion 

This article is a continuation of our first series of publications, which will examine the full design and testing 

process of an approach called "building performance monitoring and characterization". It presents only some of the 

obtained results related to the created neural network. The correct operation of the developed research methodology 

was indicated. Detailed results and comparative analysis will be discussed in the last article of this series. Throughout 

this series of 4 articles, we explore next-generation building technology that aims to achieve the highest occupant 

comfort while promoting a sustainable built environment with high precision but at low cost. 

We started with a feasibility review [16] based on 20 parameters used in the experimental building to establish a 

mathematical model [30] and collected the data in such a way that both the traditional and scientifically valid energy 

representations could be used interchangeably. In this way, we were able to obtain extremely low uncertainty 

estimates (less than 2%) for both room temperature and operating room temperature. To avoid getting into building 

physics and explaining that current heating and cooling technology relies on radiation from traditionally small 

windows, we chose test data for the period of the year when the dry bulb air temperature is close to the operating 

temperature. Verification carried out under these conditions allows checking the precision and accuracy of the ANN 

models. 

In this article, we added two requirements: (1) the solution must be fast and (2) it must be simple. The results 

show that even with these requirements, the model uncertainty is still within 2%. This is an extremely good result, 

since the influence of individual error components (initial weights and training error, underfitting and overfitting 

eliminated 47 of the 50 cases tried. The fact that 94% of the cases are not repeatable or precise may explain why 

many researchers go to the complicated neural network system or use a self-learning system. 

This series of 4 articles aims to establish the limits of precision and accuracy (deviations from measured values), 

which are to serve as a reference point in the development of new technologies. 

In practice, the number of measured parameters will be reduced to 2 for each air-conditioned room in the building 

core and 4 for rooms exposed to external factors. In this way, the research presented above provides a roadmap for 

the development of a stable, repeatable ANN with above-average precision. 

Another noteworthy fact is that this ANN occupied only 9 KB of memory in the MATLAB cache and therefore 

can be easily used in any control system. Most likely, it can be used to modernize the currently used control system 

in an intelligent building. To sum up, we have created the basis for introducing an adaptive climate in buildings. 

The above series of 4 articles concerns currently existing technology. Let's hypothesize, where are we headed? 

The accuracy of the energy efficiency of an apartment located in a multi-family residential building should be 

assessed. It is important to remember that the energy balance includes two different elements, one related to the 

temperature difference and the other to the air pressure difference within the building envelope. The former may be 

multidirectional in the presence of thermal bridges or zones with different internal temperatures, but we know the 

path of heat flow. It's no different when it comes to airflow. In the best case, we can know the inter-zone air flows 

(from one room to another room), but not the interstitial air flows (through sidewall ducts). This means that our 

modeling must take into account all heated (or cooled) spaces together and each room separately. Since the 

computation time increases with the complexity of the interacting nodes, we need to add measurements of air pressure 

differences between zones to separate air flows within the heating zone and between heating zones. 

 

5 Conclusions 

A rapid acting, stable, and reproducible ANN network with above-average precision has been established for the 

supplied data set highlighting the capability of a new Monitoring and Building Performance Characterization 

technology in a steady-state heating pattern. 
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