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Abstract

This paper presents a solution for the problem concerning the behaviour of a steel lattice girder subjected to
dynamic load pulses. The theory of shakedown is used in the analysis. It is assumed that such loads cause a
non-elastic response which includes dissipation of energy causing deformations and residual forces developed in
the structural members of the girder. At a certain intensity of these forces, the girder can react to subsequent
load pulses without further dissipation of energy, behaving in the elastic region after shakedown. This condition
is referred to as adaptation of the structure to assumed cyclic loading. Elastic shakedown limit is determined
through a direct analysis of the girder’s dynamic behaviour, i.e. by checking if energy dissipation decreases with
loading cycles. This gives the number of load applications after which no further increase of the energy dissipation
is observed. The existing permanent deformations persist and residual forces remain in the same state. The
analysis takes into account the possibility that compressed members can buckle which may result in non-elastic,
longitudinal and transverse vibrations of these members. Non-linear geometry of members is taken into account.
Then a perfectly elastic-viscoplastic model of the material is used. The main goal is to determine the state of the
non-elastic movements of the girder joints and the residual internal forces developed in the girder members after
each load application. The values obtained in this way serve as the basis for describing the next loading cycle. It is
possible to use the approach presented in the paper to evaluate the effects of accidental loads. Then it is checked
whether a small number of repetitions of accidental load would result in exceeding the serviceability limit state
criteria of the maximum permanent deformation or displacement and/or strain amplitudes. If so, the magnitude of
accidental load is greater than the elastic shakedown limit. Some examples are given to illustrate the application
of the theory of shakedown.
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1 Introduction
In the design of supporting structures of various structures intended for long-term use limit states computational
procedures are used. The occurrence of these states is considered in situations combining possible adverse stress
situations, taking into account the distribution of variable loads. Consistent design of structures which are statically
indeterminate due to the ultimate limit state requires application of computer analysis taking account physical and
possibly geometric non-linearity, often with the application of iterative procedures. There are situations in which one
should consider the number of load applications in a specified rhythm of time. This will need consideration of loading
and unloading processes including determination of permanent deformations and residual states of internal forces.
Then we need to decide whether it is absolutely necessary to eliminate the development of plastic deformation at the
next load application. This is because the effects of plastic deformation may cause strengthening of the structure
during the next occurrence of variable load. These issues pertain to the theory of shakedown. You can find paper
on the optimal design of truss based on the theory of shakedown with estimation of load capacity for shakedown.
They mostly concern the model of elastic perfectly plastic material and static load, for example [6, 8]. Other material
models are also taken in the same way as at paper [11].

2 Subject of the Analysis
The analysed member is a steel lattice girder subjected to load pulses P(t) as presented in Fig. 1a. The dynamic
response in the lattice girder is produced by load pulse applied at the girder joint No. 3. The load diagram includes
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also virtual load q(y,t), which is used only as a factor initiating instable behaviour of compression member No. 1-4.
In the paper is presents a more accurate approach considering the buckling of the truss [12].

The discrete model assumed for the analysis is presented in Fig. 1b. In this model, the members are differentiated
depending on whether their critical strain is defined by tension or compression as the decisive factor. The masses of
tension members are put on the main joints of the girder, mI , I=1,2,3,4. These masses include the gusset plates
weight.

The movement of the girder joint masses is described by the displacements {uI (t)}, {wI (t)}. compressed members
are used as digital controllers with point masses m(k). The compression member 2-4 is divided into twenty sections, the
compression member No. 1-4 into ten sections and the compression member No. 3-4 into fifteen sections. The number
of the section between the concentrated masses m(k) is denoted by the letter j. This division made it possible to
maintain a constant spatial step of each compression member of ∆x=0.2m. The adopted discretization of compressed
members takes into account their longitudinal and transverse vibrations. Each compression member joint (k) has
two degrees of freedom. Their displacements over time are: wI−K (k) (perpendicular to the axis of the member),
vI−K (k) (longitudinal), where I-K denotes the member and k denotes the member’s joint. The dynamic response of
compression members in the stages of buckling is described by using the theory of moderately large deflections for the
small deflections situation.

Figure 1. Analysed lattice girder: a) static diagram b) discrete model

The adopted method of discretization ignores longitudinal and transverse vibrations of tension members. It is
assumed that the strains of these members, assumed to be straight, are defined by the dynamic movements of the
main girder joints. The lattice girder with approximate dimensions of L=4m and H=3m includes members made
of circular hollow sections of steel class S235: tension member No. 1-2 R101.6X8.8; tension member No. 2-3:
R101.6X6.3; compression member No. 3-4 R101.6X3.6; compression member No. 1-4: R101.6X8.8; tension member
No. 1-3 2R101.6X12.5 and compression member No. 2-4: R101.6X12.5.

The aim of the research is to find the dynamic elastic shakedown limit, assuming that the compression members can
buckle temporarily only in the plane of the lattice girder in elastic or non-elastic region. However, total deformation
would not occur in real life, as the compressed members are integrated in the supporting structure of the lattice
girder subjected to the appropriately specified load pulse I. Deformed member causes a decrease of the compressing
force. We assume that unstable reactions of compressed members result from vibrations of the main girder joints.
They have the longitudinal and the transverse component relative to the member axis. The longitudinal component
generates longitudinal forces varying over the length, whereas the transverse component generates a flexural wave. It
should be emphasized that in the analysed girder compressed members have a stable joint at the support No. 4. As a
consequence, the vibrations of the main girder joints No. 2 and No. 3 generate unstable, dynamic movements in the
compression members No. 2-4 and No. 3-4. The unstable behaviour of the compression member No. 1-4 is caused
by the transverse virtual load of small magnitude of q(y, t) = q0 sin (π · y/H). Depending on the assumed stiffness of
the members and on the load, the compressed members behave as elastic or elastic-plastic material, according to the
model proposed by Perzyna [13].

We are looking for a solution, on the basis of the theory of shakedown, to take into account the accumulation of
plastic deformations induced by the loading/unloading cycles [7, 9, 10, 15]. This accumulation results in residual forces
generated in the members after each loading cycle. These forces may actually increase the structure’s load-bearing
capacity.
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3 Excessive pressure load pulses
The analysed lattice girder is subjected to load pulses of I, P(t)=P=const (applied at girder joint 3) according to the
sequence presented in Fig. 2.

Figure 2. Loading sequence

The load pulse ending at the point in time τ0, is followed by two-phase unloading. In first phase of unloading period
a further decrease of the dissipation of energy occurs. The girder continues to behave in a non-elastic way resulting in
a recovery of plastic deformations. At that moment, the permanent deformations and the value of dissipated energy
are set yet kinetic energy does not disappear. The period of this phase is ∆τ .This phase can by referred to as the
phase of free vibrations accompanied by fading out of the energy dissipation phenomenon.

In the next loading phase, that is in the period τd the girder has kinetic energy and is subjected to elastic vibrations
in the elastic shakedown region. In order to suppress this energy and to determine the zero conditions on the speed
of the model nodes, we introduce external speed damping to the description of movements of each of the masses. As
a result, both the vibrations and the kinetic energy decrease to approximately zero. In such a case, the response of
the girder in the next loading cycle is analysed with regard to the zero conditions of the girder joint’s speed. At the
same time, all the plastic deformations, as well as the permanent relocations, are preserved.

What is important, the load pulse duration τ0 can be set in such a way, that both the load and the dissipation of
energy disappear at the same moment. However, such a situation may be obtained separately for each loading with
τ0 having a different value in each cycle. Still, the differences between the respective values of τ0 can be have little
significance. However, this option has not been considered in the present paper.

4 Dynamic equilibrium equations
The differential equations for the main joints of the girder and for the compression members, describing the dynamic
response of the girder in the first phase are presented in (1). During the first unloading phase, the external load
disappears from the equation (1)4. Then, in the second unloading phase, we introduce to the equation a member that
defines the speed damping process {c....}. The system of equations (1) is solved numerically by the use of the finite
difference method with explicit time integration scheme.
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n
I−K(k)

m(k)

}
v̈n+1
I (k) = 1

m(k) (SnI−K(j − 1)− SnI−K(j)).........................
{
− cv̇

n
I−K(k)

m(k)

}
(1)

where:

ün+1
2 , ün+1
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1 , ẅn+1

2 , ẅn+1
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developed in the girder members at the current point in time tn ; q(y(k)) is the virtual transverse load which initiates
buckling of compression member No. 1-4; m1, m2, m3- are the point masses located at the main girder joints.

sinα = H√
H2+L2

cosα = L√
H2+L2

The dynamic boundary condition at the main joints of the girder - I = 1, 2, 3 is expressed as:

SnI−K(0)cosα0 +QnI−K(0)sinα0 −mI

∆2vnI−K(I)

∆t2
|y=0 = SnI−K (2)

where:

SnI−K is the compression force in the member and α0 is the angle of α0 ≈ ∂w
∂y ](y=0,t)

For deflections cosα0 is approximately 1.

The system of equations (1) has been solved by the use of the finite difference method with explicit time integration
scheme. The condition of stability was introduced according to [1]. It is written as:
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where: ∆tcr – critical step of time discretization; EJ – stiffness of the member; ∆x – step of the space discretization;
S – amplitude of the compression force acting on the member, estimated by the value of the external load applied at
the girder joint No. 3; m(k) – point mass of the discrete model of compressed member.

The non-linear geometrical models representing longitudinal deformations enI−K(k) and curvatures of compression
members knI−K(k) are expressed by the following differential equations:
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And the constitutive relations of the model of deformation of an elastic-viscoplastic material [13] are written as:

σ̇(t)− E · ε̇(t) =

{
0..........for....σ(t) < fyk

E · γ∗
[
σ(t)
fyk
− 1
]δ
...for...σ(t) ≥ fyk

(6)

where:

σ̇(t); ε̇(t) - stress and strain rate; E – Young’s modulus;

σ(t) -stress; fyk – nominal (characteristic) yield point of steel;

γ∗,δ -parameters adopted by D.S. Clark and P.E. Duwez [5]for mild steel and strain rate of ˙ε ≤ 200s−1

The equation (6) has a phenomenological structure. It relates to an ideally elastic-viscoplastic material. The term
“ideally” concerns both the elasticity of the material and its plastic properties. The adoption of the limit of plasticity
fyk = const means that strengthening by plastic deformation does not occur. The accumulation of deformations in
visco-plastic flow does not influence the change of fyk . This assumption simplifies the analysis in the case of the
multiple non-elastic processes and is regarded as an acceptable approximation for small plastic deformations. In the
conducted analyses, the plastic element of the total deformation equalled the limit of plasticity fyk/ES . The second
part of the constitutive relation (6) focuses on the behaviour of the material under loads exceeding fyk, regardless of
the character of the process (strengthening or weakening).
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5 Results
In order to perform a numeric analysis a special computer program was developed enabling determination of the
elastic shakedown limit of lattice girders with the stiffness of members defined by the assumed cross-sections p.2.
The adopted stiffness is such that the compression member No. 3-4 is the most strained one and buckling under the
vibrations of the girder joint No. 3: w3(t), u3(t). The dynamic elastic limit of the girder was defined as PEdyn = 68kN
at which value there were no non-elastic deformations. The compressed members buckled for a certain time due to
the vibrations of the main girder joints. When the load pulse ceased, there was no need to take into account the first
phase of unloading and damping phase was considered on the sole basis. After damping of vibrations the compressed
members recovered their original linear shape. The load pulses P exceeding the elastic limit PEdyn cause in each cycle
dispersion of energy used for plastic deformations. The decrease of this dispersion was observed for the value P=119kN
which was visible after cycle No. 10. Hence, this value can be considered the elastic shakedown limit of P s−ddyn = 119
kN. In the following cycles, at that load pulse value, the girder behaved in the elastic region after shakedown.

The shakedown effect is reflected by the response of the weakest member of the girder, i.e. the compression member
No. 3-4. At that time it is subject to transverse vibrations, as illustrated in Fig. 3.

Figure 3. Deformations of the compression member No. 3-4 following the pattern of the second buckling mode under
the load of P s−ddyn = 119 kN

In the following cycles the amplitudes of the deflections of compression member No. 3-4 are more and more stable.
The character of this member’s vibrations in the selected cycles of the load is presented in Fig. 5. Each cycle illustrates
the displacement response during loading phase of t ≤ τ0 with alternating sign deflections caused by the transverse
vibrations with amplitudes of ca. (-7.5; 8.0) mm. The visible response of the member in the first phase of the load
phase of τ0<t<∆τ indicates the increase of the transverse vibrations amplitude up to ca. (-12.5; 9.5) mm. This results
from the fact that the first unloading phase may directly follow the rapid decrease of the external load, accompanied
by unfavourable displacement rate and distribution. Such initial conditions determined strengthening of the member’s
response from the kinematics point of view. The member’s response in the second unloading phase was analysed at
the time when non-elastic response has completely faded out (∆τ < t ≤ τd) .

The equations of motion (1) include external damping aimed at damping of vibrations in the elastic region after
shakedown. As a result, the amplitude of the permanent deformation z1 was determined after the first loading cycle.
This amplitude became stable in the tenth cycle at a level z2=0.5mm. The green line in Fig. 4 denotes the form of
the permanent deformations of the compression member.

Adaptation of the analysed lattice to the adopted load pulses was followed by development of the residual forces,
advantageous for the compressed members No. 3-4 and No. 1-4. In the case of these compression members, the
residual forces increase their load-carrying capacity. Also the compression force acting on the tension member No. 1-3
is an advantageous residual force. An adverse effect of the residual force is noted only for the compression member
No. 2-4. It is a compression residual force developed due to cyclic loading.

6 Accidental actions
With loads exceeding the elastic shakedown limit, P > P s−ddyn we can consider situations that occur in the case
of excessive loads, that is the accidental actions. Here, the aim is to evaluate if such loads can be considered
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Figure 4. Symptoms of the girder’s shakedown under the load of P s−ddyn = 119 kN , z – level of the damped vibrations,
associated with permanent deflections of the compression member No. 3-4, z → z2=0.5mm

acceptable. The computer program enables determination of the permanent effects under the loads that exceed
the elastic shakedown limit. It is also possible to obtain the number of loading cycles that would not affect the
permanent deformation, strain or relocation criteria. Such deformations may be treated as a criterion representing
the irreversible serviceability limit state with the consequences threatening the structure’s stability.

Such situations are typically considered in the design of structures in areas of seismic activity. The designed
load-bearing structures are not expected to provide full resistance to loads resulting from earthquakes. Generally they
should enable occupants to survive the first impact. Ensuring continued use of the structure is not a must. The same
approach is used in the design of bomb shelters and anti-ram security walls with high energy dissipation capability
[3, 4, 14].

Assuming repeated loading of the girder with the load of P = 146kN > P s−ddyn according to the adopted loading
sequence (see Fig. 2) and taking as the criterion for accidental actions the greatest edge plastic deformation of
%0ε

pl
max ≤ 2.3εEmax which occurs in the compression member No. 3-4 subjected to the buckling resulting in losing

of stability the numerical analysis results show that this criterion will not be affected by loading with up to three
repetitions. The adopted limit strain criterion corresponds to the bending amplitude of compression member No. 3-4
affected by permanent buckling which is equal to the maximum of w3−4 = approximately L/889 = 4.5 mm.

7 Conclusions
This paper presents the numerical solution of the problem of determining the elastic shakedown limit of steel lattice
girder under pulse loads. The resulting load value of P s−ddyn = 119kN is greater than the dynamic elastic limit of
PEdyn=68kN since the theory of shakedown allows to assume strengthening of the material. Quantitative prediction of
such strengthening requires determination of residual forces generated in a statically indeterminate structure. These
residual forces arising from constrained unloading of the material with plastic deformations generated in the plastic
region caused by completion of the next loading cycle (damping phase was introduced to this end). Residual force
values are included in the description of the structure’s behaviour during the next loading cycle. Adaptation of the
structure is recognized in the analysis by keeping track of the energy dissipation level in the respective loading cycles.
The evidence of such adaptation is no longer increasing dissipation of energy with continued loading. This means no
further increase in the permanent deflections. The approach adopted in this study is based on the direct tracking of the
dynamic behaviour of the girder in the subsequent loading cycles in the elastic behaviour region. The dynamic response
of the girder was determined by using the adopted discrete model of the main girder joints accompanied with dense
discretization of the compression members. Situations in which initially straight compression members experience
temporary buckling were considered, taking into account the wave nature of taking up compression forces. The forms
of buckling movements of the compression members are initiated by vibrations of the main girder joints or virtual
transverse load - in the case of compression member No. 1-4 - of extremely small magnitude and completely fading
over time. Kinematic effects of each loading cycle are damped without affecting the existing plastic deformations. In
theory, this enables correct representation of the loading history and at the same time allows us to determine the values
of the greatest permanent deflections. The permanent effects of compression members deformation - longitudinal and
transverse - are taken into account in the analysis of the next loading cycle.
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The paper emphasizes the usefulness of the approach for estimating maximum permissible accidental loads owing
to assumption of permanent effects in the material of structure. The issues of this kind typically occur in the design of
structures featuring high energy dissipation ability. The adopted cyclic loading (numbering a few dozen cycles) must
not be considered the same as fatigue loading with a much greater number of repetitions.

In theoretical terms, the description of lattice girder vibrations considers the second order vibrations - dynamic
response of unstable compression members. The vibrations of tension members, which are also subject to the influence
of vibration the main girder joint are ignored. It was assumed that the response of tension members has a lesser impact
on the dynamic behaviour of the girder as compared to the compression members. This project was limited to analysing
the behaviour of a lattice girder under cyclic loading with the application of the theory of shakedown and, as such,
no numerical estimate of that impact has been provided at that stage (this can be the subject of further analysis).

A more accurate design approach taking into account the optimization of the truss (which is not presented in
this paper) under repeated variable load but for the perfectly elastic-plastic material model is presented in the paper
[2]. It contains the improved mathematical model of truss volume minimization problem with strength, stiffness and
stability constraints.
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